Number of paths per length on polytopes (counter)examples & central limit theorem

Germain Poullot & Martina Juhnke

26 June 2025 arXiv:2504.20739

- Monotone paths & coherent paths
 - Monotone paths
 - Coherent paths
 - Unimodality?
- Positive examples
- Negative examples
 - Lopsided d-cube
 - Simplicial
 - Generalized permutahedron
 - 0/1-coordinates
- Random case
 - Uniform distribution on the sphere and β -polytopes
 - Expectancy
 - Variance
 - Central limit theorem

Monotone paths & coherent paths

Linear optimization

Linear constrains, linear objective function

Solution: simplex method on polytope

Monotone paths

Monotone paths

Monotone path: directed path $\mathbf{v}_{min} \leadsto \mathbf{v}_{max}$ in directed graph $G_{P,c}$

Monotone paths

Monotone path: directed path $\mathbf{v}_{\min} \rightsquigarrow \mathbf{v}_{\max}$ in directed graph $G_{P,c}$ length: number of edges $N_{\ell} = \#\{\text{paths of length} \ \ell\}$

Linear optimization in dimension 2 (simplex method): EASY!

Convention: choose upper

Optimization in higher dimension: make it 2-dimensional!

Shadow vertex rule: take (improving) neighbor with best slope

Optimization in higher dimension: make it 2-dimensional!

Shadow vertex rule: take (improving) neighbor with best slope Coherent path: path captured by some ω $N_\ell^{coh} = \#\{\text{coherent paths of length }\ell\}$

Number of paths on a *d*-simplex

Theorem (Billera–Sturmfels '92 (Fiber polytopes))

For any d-simplex Δ_d and any (generic) c

$$N_\ell = N_\ell^{coh} = egin{pmatrix} d-1 \ \ell-1 \end{pmatrix}$$

Number of paths on a *d*-simplex

Theorem (Billera–Sturmfels '92 (Fiber polytopes))

For any d-simplex Δ_d and any (generic) c

$$N_\ell = N_\ell^{coh} = egin{pmatrix} d-1 \ \ell-1 \end{pmatrix}$$

 $\binom{d}{\ell}$ is nice: symmetric, log-concave, unimodal, seems Gaussian,...

Number of paths on a *d*-simplex

Theorem (Billera–Sturmfels '92 (Fiber polytopes))

For any d-simplex Δ_d and any (generic) c

$$N_\ell = N_\ell^{coh} = egin{pmatrix} d-1 \ \ell-1 \end{pmatrix}$$

 $\binom{d}{\ell}$ is nice: symmetric, log-concave, unimodal, seems Gaussian,...

Proof for N_{ℓ} :

 $G_{\Delta_d,c}$: (acyclic) complete graph

Path on Δ_d : sub-set of vertices without \boldsymbol{v}_{\min} , \boldsymbol{v}_{\max}

Length of path: number of vertices -1

Main question

Question A

For P and \boldsymbol{c} , are $(N_{\ell})_{\ell}$ and $(N_{\ell}^{\text{coh}})_{\ell}$ unimodal?

Main question

Question A

For P and c, are $(N_{\ell})_{\ell}$ and $(N_{\ell}^{\text{coh}})_{\ell}$ unimodal?

Spoilers:

- "Yes" in some cases
- "No" in general
- "Almost yes" statistically

Positive examples

Unimodal examples

polytope	definition
simplex	$\Delta_d := conv(oldsymbol{e}_i \; ; \; 1 \leq i \leq d+1)$
cube	$[0,1]^d$
cross-polytope	$\lozenge_d := conv(\pm oldsymbol{e}_i \; ; \; 1 \leq i \leq d)$
cyclic polytope	$Cyc_d(oldsymbol{t}) := conv((t_i, t_i^2, \dots, t_i^d) \; ; \; 1 \leq i \leq n)$
S-hypersimplex	$\Delta_d(S) := \operatorname{conv}(\boldsymbol{x} \in \{0,1\}^d \; ; \; \sum_i x_i \in S)$

Unimodal examples

polytope	N_ℓ	N_ℓ^{coh}			
simplex	$inom{d-1}{\ell-1}$				
cube	$d!$ iff $\ell = d$				
cross-polytope	$2\sum_{k=0}^{d-2} \binom{2k}{\ell-2}$	$ig(egin{array}{c} d-1 \ \ell-1 \ \end{pmatrix} 2^{\ell-1}$			
cyclic polytope	$\binom{n-2}{\ell-1}$	complicated			
S-hypersimplex	$\begin{pmatrix} d \\ \tilde{s}_1, \tilde{s}_2,, \tilde{s}_r \end{pmatrix}$	$iff\; \ell = \mathcal{S} $			

Sources: Billera-Sturmfels '92, Athanasiadis-De Loera-Reiner '00, Maneck–Sanyal–So '20, Black–De Loera '23 + our computations

Negative examples

$$\begin{array}{c|cccc} \ell & 2 & 3 & 4 \\ \hline N_{\ell} = N_{\ell}^{\mathsf{coh}} & 2 & 0 & 4 \\ \end{array}$$

Works in any dimension.

Works in any dimension.

N.B.: One can remove 0s.

Simplicial counter-example

Simplicial counter-example

Simplicial counter-example

N.B.: One can put the vertices on a sphere

Loday's associahedron of dimension 5

Definition

Generalized permutahedron: all edges of P are in direction $e_i - e_i$ for some $i \neq j$

Loday's associahedron, '04

Asso_n is a generalized permutahedron

$$\mathsf{Asso}_n = \left\{ \mathbf{x} \in \mathbb{R}^n : \begin{array}{l} \sum_{i=1}^n x_i = 0 \\ \sum_{i \in I} x_i \ge \binom{|I|+1}{2} & \text{for } \emptyset \ne I = [a, b] \subsetneq [n] \end{array} \right\}$$

Loday's associahedron of dimension 5

Definition

Generalized permutahedron: all edges of P are in direction $e_i - e_i$ for some $i \neq j$

Loday's associahedron, '04

Asso_n is a generalized permutahedron

$$\mathsf{Asso}_n = \left\{ \mathbf{x} \in \mathbb{R}^n : \begin{array}{l} \sum_{i=1}^n x_i = 0 \\ \sum_{i \in I} x_i \ge \binom{|I|+1}{2} & \text{for } \emptyset \ne I = [a, b] \subsetneq [n] \end{array} \right\}$$

For Asso₅:

$$c = (1, 2, 3, 4, 5)$$

							12				
$\overline{N_\ell}$	1	20	112	232	382	348	456	390	420	334	286
N_ℓ^{coh}	1	20	105	206	332	274	332	270	206	122	142

Sources: Nelson '17 + our computations

Polytopes with 0/1-coordinates

Definition (0/1-polytopes)

For
$$\mathcal{X} \subseteq 2^{[n]}$$
, define $\mathsf{P}_{\mathcal{X}} := \mathsf{conv}\left(\boldsymbol{e}_{X} \; ; \; X \in \mathcal{X}\right)$
 $\boldsymbol{c}_{lex} := \left(2^{1}, 2^{2}, \ldots, 2^{n}\right)$

Polytopes with 0/1-coordinates

Definition (0/1-polytopes)

For
$$\mathcal{X} \subseteq 2^{[n]}$$
, define $\mathsf{P}_{\mathcal{X}} := \mathsf{conv}\left(\boldsymbol{e}_{X} \; ; \; X \in \mathcal{X}\right)$
 $\boldsymbol{c}_{lex} := \left(2^{1}, 2^{2}, \ldots, 2^{n}\right)$

$$n=5, \ \mathcal{X}=$$
 all subsets of 14, 1235 or 2345 $P_{\mathcal{X}}$ not simple, not simplicial: $\mathbf{c}=(2,4,8,16,32)$ Obtained by brute force $\frac{\ell \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid \text{total}}{N_{\ell} \mid 2 \mid 36 \mid 96 \mid 76 \mid 84 \mid 36 \mid 330}$

Random case

Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1}

Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1} Study the random variable $L_n = length$ of a coherent path

Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1} Study the random variable $L_n = length$ of a coherent path $\rightarrow (N_\ell^{coh})_\ell$ is the histogram of L_n i.e., close to its proba. ditribution

```
Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1}
Study the random variable L_n = length of a coherent path \to (N_\ell^{\rm coh})_\ell is the histogram of L_n i.e., close to its proba. ditribution
```

#coherent paths?

```
Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1}
Study the random variable L_n = length of a coherent path \to (N_\ell^{\mathsf{coh}})_\ell is the histogram of L_n i.e., close to its proba. ditribution
```

```
#coherent paths? Average length \mathbb{E}L_n?
```

Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1} Study the random variable $L_n = length$ of a coherent path $\to (N_\ell^{coh})_\ell$ is the histogram of L_n i.e., close to its proba. ditribution

```
#coherent paths? Average length \mathbb{E}L_n? More short/long paths?
```

```
Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1}
Study the random variable L_n = length of a coherent path \to (N_\ell^{coh})_\ell is the histogram of L_n i.e., close to its proba. ditribution
```

```
#coherent paths? Average length \mathbb{E}L_n? More short/long paths? More of average length?
```

```
Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1}
Study the random variable L_n = length of a coherent path \to (N_\ell^{coh})_\ell is the histogram of L_n i.e., close to its proba. ditribution
```

#coherent paths? Average length $\mathbb{E}L_n$? More short/long paths? More of average length?

Borgwardt '87:

Gave: Formulae $\mathbb{E}L_n$ for several models

Asked: What are the higher moments? e.g., variance

```
Pick a model of random polytopes e.g., n points on \mathbb{S}^{d-1}
Study the random variable L_n = length of a coherent path
\rightarrow (N_{\ell}^{\text{coh}})_{\ell} is the histogram of L_n i.e., close to its proba. ditribution
```

#coherent paths? Average length $\mathbb{E}L_n$? More short/long paths? More of average length?

Borgwardt '87:

Gave: Formulae $\mathbb{E}L_n$ for several models

Asked: What are the higher moments? e.g., variance

→ I want a central limit theorem: $n \to +\infty \Rightarrow (\mathsf{almost}) \ L_n \sim \mathcal{N}(0,1) \ \mathsf{once} \ \mathsf{normalized}$ dimension d is fixed

I won't spreak on unimodality in random model: see details under the rug!

$$X_1, \dots, X_n \sim \mathcal{U}(\mathbb{S}^{d-1})$$
 $P_n = \operatorname{conv}(X_1, \dots, X_n)$

I want: L_n for coherent paths

$$X_1, \dots, X_n \sim \mathcal{U}(\mathbb{S}^{d-1})$$
 $P_n = \text{conv}(X_1, \dots, X_n)$

I want: L_n for coherent paths

$$X_1, \dots, X_n \sim \mathcal{U}(\mathbb{S}^{d-1})$$
 $P_n = \operatorname{conv}(X_1, \dots, X_n)$

I want: L_n for coherent paths

$$Z_i = 2$$
-dim projection of X_i $Q_n = conv(Z_1, ..., Z_n)$

I want: $f_0(Q_n)$ or $f_1(Q_n)$

$$X_1,\ldots,X_n\sim\mathcal{U}(\mathbb{S}^{d-1})$$

$$\mathsf{P}_n = \mathsf{conv}(X_1, \dots, X_n)$$

I want: L_n for coherent paths

 $Z_i = 2$ -dim projection of X_i $Q_n = \text{conv}(Z_1, \dots, Z_n)$

I want: $f_0(Q_n)$ or $f_1(Q_n)$

$$d = 5,$$

$$\beta = +1/2$$

d = 6.

 $\beta = +1$

 $\beta = -1/2$

$$d = 12,$$

$$d = 9,$$
 $d = 12,$ $d = 15,$ $d = 20,$ $\beta = +5/2$ $\beta = +4$ $\beta = +11/2$ $\beta = +8$

$$d = 20,$$

$$X_1,\ldots,X_n\sim\mathcal{U}(\mathbb{S}^{d-1})$$

$$\mathsf{P}_n = \mathsf{conv}(X_1, \dots, X_n)$$

I want: L_n for coherent paths

 $Z_i = 2$ -dim projection of X_i $Q_n = \text{conv}(Z_1, \dots, Z_n)$

I want: $f_0(Q_n)$ or $f_1(Q_n)$

$$d = 9,$$

$$d = 9,$$
 $d = 12,$ $d = 15,$ $d = 20,$

$$d = 9,$$
 $d = 12,$ $d = 15,$ $d = 20,$ $\beta = +5/2$ $\beta = +4$ $\beta = +11/2$ $\beta = +8$

$$d = 20,$$

⇒ concentration around center

β -polygons

$$X_1, \ldots, X_n \sim \mathcal{U}(\mathbb{S}^{d-1})$$
 $Z_i = 2$ -dim proj X_i $Q_n = \operatorname{conv}(Z_i)_i$

Theorem (Kabluchko-Thäle-Zaporozhets '20)

Z_i distributed according to density:

$$f_{2,eta_d}(oldsymbol{x}) = C \, \left(1 - \|oldsymbol{x}\|^2
ight)^{eta_d} \quad ext{ for } oldsymbol{x} \in \mathbb{B}^2$$

where $\beta_d = \frac{1}{2}d - 2$ and C is a constant

β -polygons

$$X_1, \ldots, X_n \sim \mathcal{U}(\mathbb{S}^{d-1})$$
 $Z_i = 2$ -dim proj X_i $Q_n = \operatorname{conv}(Z_i)_i$

Theorem (Kabluchko-Thäle-Zaporozhets '20)

 Z_i distributed according to density:

$$f_{2,eta_d}(oldsymbol{x}) = C \, \left(1 - \|oldsymbol{x}\|^2
ight)^{eta_d} \quad ext{ for } oldsymbol{x} \in \mathbb{B}^2$$

where $\beta_d = \frac{1}{2}d - 2$ and C is a constant

β -polygons

$$X_1, \ldots, X_n \sim \mathcal{U}(\mathbb{S}^{d-1})$$
 $Z_i = 2$ -dim proj X_i $Q_n = \operatorname{conv}(Z_i)_i$

Theorem (Kabluchko-Thäle-Zaporozhets '20)

 Z_i distributed according to density:

$$f_{2,eta_d}(oldsymbol{x}) = C \left(1 - \|oldsymbol{x}\|^2
ight)^{eta_d}$$
 for $oldsymbol{x} \in \mathbb{B}^2$

where $\beta_d = \frac{1}{2}d - 2$ and C is a constant

N.B.: $d = 3 \Leftrightarrow \beta < 0$; $d = 4 \Leftrightarrow \mathcal{U}(\mathbb{B}^2)$; $d > 5 \Leftrightarrow \beta > 0$

In the following: d > 4

Expectancy

$$Z_1, \ldots, Z_n \sim \beta$$
-distributed $\beta_d = \frac{1}{2}d - 2$ $Q_n = \text{conv}(Z_i)_i$

Expectancy

$$Z_1, \ldots, Z_n \sim \beta$$
-distributed $\beta_d = \frac{1}{2}d - 2$ $Q_n = \text{conv}(Z_i)_i$

Theorem (Kabluchko-Thäle-Zaporozhets '20)

$$\mathbb{E} f_0(Q_n) \sim c n^{\frac{1}{d-1}}$$

where c > 0 is a constant (some-what explicit)

Variance

$$Z_1,\ldots,Z_n\sim eta$$
-distributed $Q_n=\operatorname{conv}(Z_i)_i$ $\mathbb{E} f_0(Q_n)\sim c \ n^{\frac{1}{d-1}}$

Theorem (Juhnke-P. '25)

$$c' n^{\frac{1}{d-1}-a} \leq \operatorname{Var} f_0(\mathsf{Q}_n) \leq c'' n^{\frac{1}{d-1}}$$

for all a > 0, for some constants c', c''

Variance

$$Z_1, \ldots, Z_n \sim \beta$$
-distributed $Q_n = \operatorname{conv}(Z_i)_i$ $\mathbb{E} f_0(Q_n) \sim c \, n^{\frac{1}{d-1}}$

Theorem (Juhnke–P. '25)

$$c' n^{\frac{1}{d-1}-a} \leq \operatorname{Var} f_0(\mathbb{Q}_n) \leq c'' n^{\frac{1}{d-1}}$$

for all a > 0, for some constants c', c''

Proofs' ideas

Lower bound: ε -floating body + kind of Sylvester's 4-point problem Upper bound: 1st order difference + Efron–Stein jackknife ineq.

ε -cap and ε -floating body

 ε -cap: cap with measure = ε Careful: measure according to β -density ε -floating body: complement of all ε -caps

ε -cap and ε -floating body

 ε -cap: cap with measure = ε Careful: measure according to β -density ε -floating body: complement of all ε -caps

Lemma

For any
$$s>0$$
 and $\varepsilon=c_0\frac{\log n}{n}$, with $c_0=\frac{1}{d-1}+s$
$$\mathbb{P}(\mathsf{F}_\varepsilon\subset\mathsf{Q}_n)\geq 1-n^{-s}$$

ε -cap and ε -floating body

 ε -cap: cap with measure = ε Careful: measure according to β -density ε -floating body: complement of all ε -caps

Lemma

For any
$$s>0$$
 and $\varepsilon=c_0\frac{\log n}{n}$, with $c_0=\frac{1}{d-1}+s$
$$\mathbb{P}(\mathsf{F}_\varepsilon\subseteq\mathsf{Q}_n)\geq 1-n^{-s}$$

Lemma

If $\varepsilon = c_0 \frac{\log n}{n}$, there "is" ≥ 1 vertex of Q_n in each ε -cap

Sylvester 4-point problem

 $\mathbb{P}ig(\mathsf{conv}(\mathsf{these}\ \mathsf{4}\ \mathsf{points})\ \mathsf{is}\ \mathsf{triangle}ig)\ \mathsf{far}\ \mathsf{from}\ \mathsf{0}\ \mathsf{and}\ \mathsf{1}\ \mathsf{indepently}\ \mathsf{of}\ arepsilon$

Sylvester 4-point problem

 $\mathbb{P}ig(\mathsf{conv}(\mathsf{these}\ \mathsf{4}\ \mathsf{points})\ \mathsf{is}\ \mathsf{triangle}ig)\ \mathsf{far}\ \mathsf{from}\ \mathsf{0}\ \mathsf{and}\ \mathsf{1}\ \mathsf{indepently}\ \mathsf{of}\ arepsilon$

Lemma

If $\varepsilon = c_0 \frac{\log n}{n}$, then $\mathbb{P}(\text{exactly 4 such points in } \varepsilon\text{-cap}) \geq c \ n^{-c_0}$

Sylvester 4-point problem

 $\mathbb{P}ig(\mathsf{conv}(\mathsf{these}\ \mathsf{4}\ \mathsf{points})\ \mathsf{is}\ \mathsf{triangle}ig)\ \mathsf{far}\ \mathsf{from}\ \mathsf{0}\ \mathsf{and}\ \mathsf{1}\ \mathsf{indepently}\ \mathsf{of}\ arepsilon$

Lemma

If $\varepsilon = c_0 \frac{\log n}{n}$, then $\mathbb{P}(\text{exactly 4 such points in } \varepsilon\text{-cap}) \ge c n^{-c_0}$

Corollary (Juhnke-P. '25)

$$\operatorname{\mathsf{Var}} f_0(\mathsf{Q}_n) \, \geq \, \mathbb{E}(\operatorname{\mathsf{Var}}(f_0(\mathsf{Q}_n) \mid \boldsymbol{X})) \, \geq \, c' n^{\frac{1}{d-1} - c_0}$$

First order difference operator

Definition

First order difference operator for $f = f_0(\text{conv}(...))$

$$Df(X_1, X_2, ..., X_n) = f(X_1, X_2, ..., X_n) - f(X_2, ..., X_n)$$

The dotted edges are edges of Q_n , but not of Q_{n+1}

Red points are visible from X_1 : we control pairs of them.

Efron-Stein jackknife inequality

Theorem (Efron-Stein jackknife inequality)

$$\mathsf{Var}\, f_0(\mathsf{Q}_n) \leq (n+1)\, \mathbb{E} \Big(\big(Df_0(\mathsf{Q}_{n+1}) \big)^2 \Big)$$

Efron-Stein jackknife inequality

we control pairs of them.

Theorem (Efron–Stein jackknife inequality)

$$\mathsf{Var}\, f_0(\mathsf{Q}_n) \leq (n+1)\, \mathbb{E} \Big(\big(Df_0(\mathsf{Q}_{n+1}) \big)^2 \Big)$$

Theorem (Juhnke–P. '25)

For $p \ge 1$ integer, there is c > 0:

$$\mathbb{E}(|Df_0(Q_n)|^p) \le c (\log n)^{p+1-\frac{1}{d-1}} \left(\frac{1}{n}\right)^{1-\frac{1}{d-1}} \quad \text{if } n \to +\infty$$

Corollary: Var $f_0(Q_n) \le c'' n^{\frac{1}{d-1}}$ for some c'' > 0

Central limit theorem using Kolmogorov distance

*Kolmogorov distance d*_{Kol}
$$(X, Y) = \sup_{x \in \mathbb{R}} |\mathbb{P}(X \le x) - \mathbb{P}(Y \le x)|$$

Theorem (Central limit theorem, Juhnke–P. '25)

With
$$U \sim \mathcal{N}(0,1)$$

$$d_{Kol}\left(\frac{f_0(Q_n) - \mathbb{E}f_0(Q_n)}{\sqrt{\operatorname{Var}f_0(Q_n)}}, \ U\right) \leq c\left(\log n\right)^{\frac{7}{2} - \frac{1}{2(d-1)}}\left(\frac{1}{n}\right)^{\frac{1}{2(d-1)}} \to 0 \quad when \ n \to +\infty$$

Controlling the Kolmogorov distance

Definition

Second order difference operator for $f = f_0(conv(...))$

$$D_{12}f(X_1, X_2, X_3, \dots, X_n) = f(X_1, X_2, X_3, \dots, X_n) - f(X_2, X_3, \dots, X_n) - f(X_1, X_3, \dots, X_n) + f(X_3, \dots, X_n)$$

Controlling the Kolmogorov distance

Definition

Second order difference operator for $f = f_0(\text{conv}(...))$

$$D_{12}f(X_1, X_2, X_3, \dots, X_n) = f(X_1, X_2, X_3, \dots, X_n) - f(X_2, X_3, \dots, X_n) - f(X_1, X_3, \dots, X_n) + f(X_3, \dots, X_n)$$

Theorem (Shao–Zhang's '25 & Lachièze-Rey–Peccati '17)

$$d_{\mathrm{Kol}}\left(rac{W-\mathbb{E}(W)}{\sqrt{\operatorname{Var} W}},\ U
ight)\ \le\ c\ rac{1}{\operatorname{Var} W}\left(\sqrt{n}\gamma_1\ +\ n\sqrt{\gamma_2}\ +\ n\sqrt{n}\sqrt{\gamma_3}
ight)$$

Controlling the Kolmogorov distance

Definition

Second order difference operator for $f = f_0(conv(...))$

$$D_{12}f(X_1, X_2, X_3, \dots, X_n) = f(X_1, X_2, X_3, \dots, X_n) - f(X_2, X_3, \dots, X_n) - f(X_1, X_3, \dots, X_n) + f(X_3, \dots, X_n)$$

Theorem (Shao–Zhang's '25 & Lachièze-Rey–Peccati '17)

$$d_{\mathrm{Kol}}\left(\frac{W - \mathbb{E}(W)}{\sqrt{\mathsf{Var}\,W}}, \, U\right) \leq c \, \frac{1}{\mathsf{Var}\,W} \left(\sqrt{n}\gamma_1 + n\sqrt{\gamma_2} + n\sqrt{n}\sqrt{\gamma_3}\right)$$

$$\gamma_1(f) = \mathbb{E}\left(|Df(\mathbf{X})|^4\right) \qquad \qquad Do \ not \ read!$$

$$\gamma_2(f) = \sup_{(\mathbf{Y},\mathbf{Z})} \mathbb{E}\left(\mathbf{1}\left(D_{12}f(\mathbf{Y}) \neq 0\right) D_1f(\mathbf{Z})^4\right)$$

$$\gamma_3(f) = \sup_{(\mathbf{Y},\mathbf{Y}',\mathbf{Z})} \mathbb{E}\left(\mathbf{1}\left(D_{12}f(\mathbf{Y}) \neq 0\right) \mathbf{1}\left(D_{13}f(\mathbf{Y}') \neq 0\right) D_2f(\mathbf{Z})^4\right)$$

Question A

For P and c, are $(N_{\ell})_{\ell}$ and $(N_{\ell}^{\text{coh}})_{\ell}$ always unimodal?

Spoilers: Answers:

Question A

For P and c, are $(N_{\ell})_{\ell}$ and $(N_{\ell}^{\text{coh}})_{\ell}$ always unimodal?

Spoilers: Answers:

"Yes" in meaningful but highly symmetric cases

Question A

For P and c, are $(N_{\ell})_{\ell}$ and $(N_{\ell}^{\text{coh}})_{\ell}$ always unimodal?

Spoilers: Answers:

"Yes" in meaningful but highly symmetric cases

"No" in all dim, for simple, simplicial, edge-restriction, 0/1...

Question A

For P and \boldsymbol{c} , are $(N_{\ell})_{\ell}$ and $(N_{\ell}^{\text{coh}})_{\ell}$ always unimodal?

Spoilers: Answers:

"Yes" in meaningful but highly symmetric cases

"No" in all dim, for simple, simplicial, edge-restriction, 0/1...

Length admits central limit theorem, i.e. histogram near Gaussian for 1 natural model

Thank you!

